

Patent Number:

Patent Title:

Our Ref No.:

Client Ref No.:

Date

Table of Contents

1.	REP	ORT	4
	1.1 (Objective	2
	1.2 F	Key Features/Claims	5
	1.3 9	Summary	ε
	1.4 k	Key Features Analysis (Optional)	7
	1.5 F	Possible Combination of the Identified Citations	8
2.	PRIC	DR ART RESULTS (35 U.S.C. 102)	10
	2.1 [Details of Patent Citations	10
	Resu	ılt 1 US5xxxx2A	10
	2.2 [Details of Non-Patent Citations	13
	Resu	ult 1 Low Contact Resistance Metallization DRAM's Using Fully-Dry Cleaning	13
3.	PRIC	OR ART RESULTS (35 U.S.C. 103)	22
4.	ОТН	ER SHORTLISTED BROAD REFERENCES	28
5.	CON	DITIONS, LIMITATIONS AND SCOPE OF SEARCH/DISCLAIMER	30
6.	PAT	ENT & NON-PATENT DATABASES	32
APP	ENDIX	I – SEARCH DETAILS	37
	1.1	Search Phases	37
	1.2	Search Keywords	43
	1.3	Search Strings	44
	1.4	Classification Based Search	48
	1.5	Assignee Name Based Search	49
	1.6	Inventor Name Based Search	49
ΛDDI	אוטוא	II – COUNTRY CODES	5.0

TTC ADVANTAGE

Interactive, Printable & User-Friendly Color-Coded Detailed Search Report

Power of Automation using AI, Cognitive Computing, Corpus & NLP (Our Teams have Access to XLPAT + You get access for the Subject Patent at No Additional Cost)

Continuing Innovation

TTC's TECH Innovation Advantage

Validity / Invalidity Search Report

1. Report

1.1 Objective

The objective of the search is to conduct a Patent and Non-patent literature search and to identify the references that belong to substantially the same technical field and subject to adequate legal review, may be construed as prior art for subject patents (**US x**,**xxxx**,**xxxx**).

Scope: References that have one or more technical features overlapping with the key features of the subject patent are also included in the analysis based on the concept that they can be combined with other references to form a relevant prior art.

The references cited in the report may have other features/elements that may not be present in the subject patent. These references have been cited for the information of the client to provide related references that are present in the domain.

Patent references cited on the face of the subject patent along with their family members are being excluded from the purview of this search. Non-Patent references cited on the face of the patent are also being excluded from the purview of this search.

Please refer to the conditions and limitations of search for details.

We hope that results of this search allow you to assess the situation of the subject patent. We would be happy to answer any further questions.

Key Dates of the Subject Patents

Priority Date: 1996-09-06
Filing Date: 1996-09-06
Issue Date: 2000-10-03

Search concluded on: 2012-02-21

Ranjit Malhotra – Patent Analyst

Sandeep Singh – Senior Patent Analyst

TT Consultants Pvt. Ltd. project@ttconsultants.com

After thorough understanding the subject patent, the researcher breaks down the invention into several key features. These key features form the basis of the search.

1.2 Key Features/Claims

The key features are prepared based on the subject patent (**US x,xxx,xxx**) and information provided by the client. The analysis of the references has been done based on one or more features overlapping with the key features of the patent to form a relevant prior art.

Key Features/Claim(s) of the Subject Patent

Note: Key Features A-H are extracted from Independent Claims (1,3,5.....) of the subject patent.

	Key Features			
Α	A drum adapted to be			
В	said drum having			
С	said bulges			
D	characterised in that			
E	each bulge is			
F	each bulge has			
G	the bulges are arranged			
Н	the offset			

Summary of identified references along with hyperlinks of the patents

1.3 Summary

Based on the details of the invention, five patents and two non-patent literatures were identified. *Only one patent per family is being mapped and other family members of the family are incorporated by reference*. Summary of the citations is presented in the tables below. Clicking on the hyperlinks will open the patent record in Esp@cenet/USPTO with e.g. full text, family and legal data and the possibility to download the original document.

1. Patent Citations

Sr. No.	Citation No.	Title	Priority Date	Publication Date
1.	<u>US5845263</u>	Interactive Visual Ordering System	1995-06-16	1998-12-01
2.	<u>US6731951B1</u>	Wireless Equipment	1999-04-20	2004-05-04
3.	<u>US1505881A</u>			
4.	DE19951743A1			
5.	WO2006131416A1			

2. Non-Patent Citations

Sr. No.	Title	Publication Date
1.	Low Contact Resistance Metallization for Gigabit Scale DRAM's Using Fully-Dry Cleaning by Ar/H ECR Plasma	April 1997
2.		2001-05-03

3. References provided by the client (Excluded from Scope of Search)

Sr. No.	Citation No.	Title	Family Members
1.	<u>US5845263</u>	Interactive Visual Ordering System	
2.	<u>US6731951B1</u>	Wireless Equipment	
3.	<u>US1505881A</u>		

1.4 Key Features Analysis (Optional) the key provides

Provided	on clien	nt's requ	est This	analysis
compares	all the id	entified re	eferences in	n light of
the key f	eatures. T	Cechnical	comments	are also
provided f	or each ide	entified re	ference.	

Sr. No.	Citation No.	Key Feature 1	Key Feature 2	Key Feature 3	Remarks
1.	<u>US5845263</u>	Yes	Yes	Yes	Covers all the features
2.	<u>US6731951B1</u>	Yes	Yes*	Yes	Unidirectional flow (Inspiration only)
3.	<u>US1505881A</u>	Yes	No	Yes	Provides impediment to air flow in one direction
4.	DE19951743A1	Yes	Yes	No	Completely fits within the oral cavity
5.	WO2006131416A1	No	Yes	Yes	Polygonal bulges

^{(*} The Key feature is implicitly or partially inferred.)

1.5 Possible Combination of the Identified Citations

Sr.	Combination of Identified	Challenge	d Claims	
No.	Citations	Target Claims	Target Claim Type	Reason to Combine
	1) US'xyz (Juhasz et al.)	Claim 1, 12	Independent Claims	US'xyz does not disclose explicitly an integrated indexed database and storing said database. US'pqr covers these limitations. US'pqr does not disclose explicitly a video camera for
1.	2) US'pqr (Mackey et al.) 3) Netware (Sony)	Claim 20, 21	Dependent Claims	generating video signals proximate a vehicle, an authentication code for accessing the recorded data and secure transmission of data from the recording device. US'xyz covers these limitations.
	1) US'abc (Juhasz et al.) 2) US'pqr (Mackey et al.)	Claim 1, 12	Independent Claims	US'pqr does not disclose explicitly an integrated indexed database and storing said database. US'abc covers these limitations.
2.		2) US'pqr (Mackey et al.)	Claim 20, 21	Dependent Claims
3	1) US'abc (Juhasz et al.)	Claim 1, 12	Independent	US'abc is explicitly or partially discloses/inferred all the claim

	Claims	elements	s of	the inde	pendent
		claims	of	subject	patent
		US'xxx.			

2. Prior Art Results (35 U.S.C. 102)

The following citations are only for personal use.

All the results are mapped based on the key features of the subject patent. The relevant texts of the patent citations are highlighted with different colors to support the mapping based on the subject patent.

2.1 Details of Patent Citations

Result 1 US5xxxx2A

Detailed Searcher's Comment (As Per Client Instructions): The mapped citation discloses a treatment planning, simulation, and verification system for providing integration of diagnostic and imported digitally reconstructed radiograph ("DRR") images (inferred as the second image) from a computed tomography ("CT") scanner, which may be added to a patient's record (inferred as the patient profile) immediately after capture. Also, In this way the treatment planning, simulation, and verification components of the system enable the clinicians to fine-tune or update treatment plans by analyzing the high-quality anatomical images of patients in their treatment positions. Further, these images are used for comparisons with treatment plan reference images so that care providers may analyze and make necessary adjustments and corrections to the treatment plan immediately.

Publication No.	US5xxxx2A	Application No.	US199xxxxxx07	Priority No.	US199xxxxx07
Title	Colorimetric imaging				
Publication Date		Application Date		Priority Date	
Assignee	Color And				
Inventor(s)	Alston				
Family Member(s)	None				
Abstract					

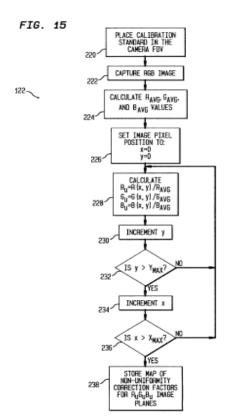
A color and appearance measurement apparatus combines a computer controlled color video camera, controlled illumination conditions, frame grabber to digitize the video signal, and image processing methods to perform non-contact calorimetric measurements of complex patterns of color. Video images of samples placed into the field of view of the camera are digitized and converted from the color camera's red, green, and blue (RGB) color space to the internationally recognized and standardized CIE XYZ color space. These measurements provide quantifiable metrics, to which various color and appearance attributes of other samples can be compared, for quality control inspection of complex colored samples that cannot be measured using conventional color measuring instruments.

Α

Provided on client's request This analysis compares all the identified references in light of the key features. Technical comments are also provided for each identified reference.

Kov	' featu	irocli	വപ	me
nev	reall	II es/	GIAI	1115

In a computer system, an virtua interface for a software application with a telecommunication resource,


Identified Patent Number: USxxxx72A

Directing API achieves this by creating an intermediate er that translates generic hardware commands into specific ommands for particular pieces of hardware.

(Column no.8, Line no.7)

the interface comprising: a command receiver unit

The GUI of the VP application is made to include features allowing a user to play,; reverse, stop, pause, forward or scrub a particular video sequence. If the forward or reverse features are activated, the VP application seeks the selected key-frame (in the video sequence) and optionally the selected audio segment (in the corresponding audio file) and begins playing the video and audio segment, if any, from that point on in the direction indicated.

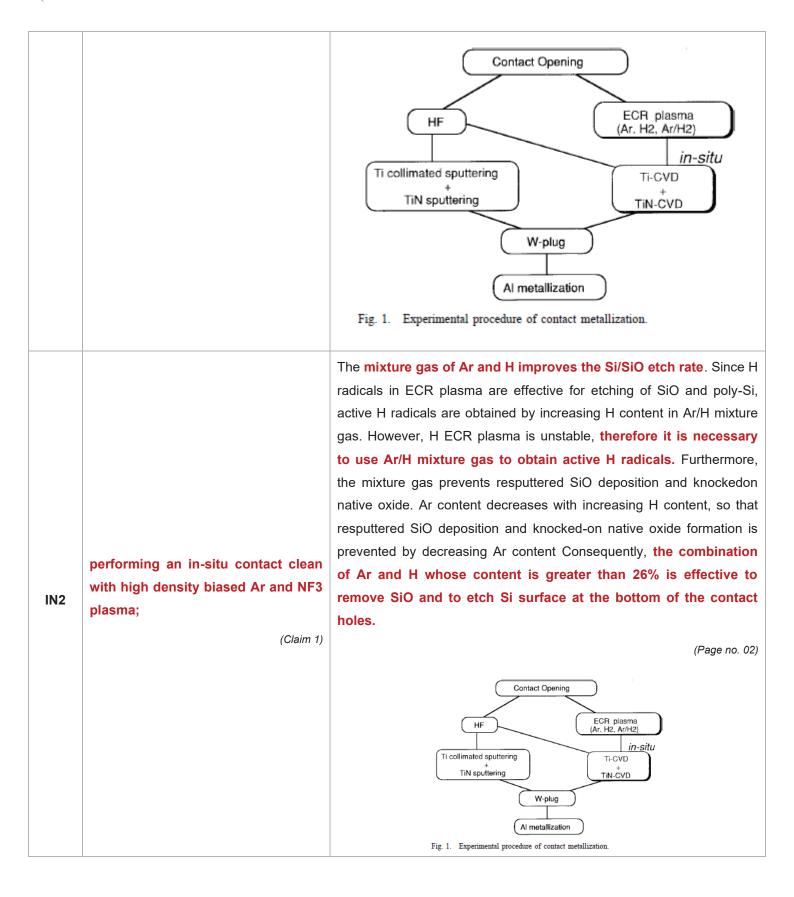
A2 and a translation unit,

The translation unit translates this virtual device command from the application to the specific hardware-related commands that can be understood by the vendor-or standards-specific telecommunication resources in the telecommunication system. Directs is a set of API's (Application Program Interfaces) that enables programmers in the Windows 10environment to write programs in memory that access hardware features of a

		computer without knowing exactly what hardware will be installed on the machine where the program eventually runs. (Column no.11, Line no. 58)
A3	a command send unit	DirectDraw is a software interface standard for transferring video processing from a PC's CPU to the video adapter. (Column no.6, Line no. 38)
A4	a storage medium	An API provides the building blocks necessary to develop a program. An API is a set of routines, protocols and tools for building software applications. Directs is a set of API's (Application Program Interfaces) that enables programmers in the Windows 10environment to write programs in memory that access hardware features of a computer without knowing exactly what hardware will be installed. (Column no.7, Line no. 25)

2.2 Details of Non-Patent Citations

Result 1 Low Contact Resistance Metallization.... DRAM's Using Fully-Dry Cleaning


Title Low Contact Resistance Metallization for Gigabit Scale DRAM's Using Fully-Dry Cleaning by A ECR Plasma	
Author/Company	Tetsuya Taguwa Koji Urabe Makoto Sekine Yoshiaki Yamada Takamaro Kikkawa
Publication Date	April 1997
Link(s) http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=563363&url=http%3A%2F%2Fee.org%2Fiel1%2F16%2F12237%2F00563363.pdf%3Farnumber%3D563363	

Abstract

A fully-dry cleaning technique with Ar/H2 Electron Cyclotron Resonance (ECR) plasma was developed as a low contact resistance metallization technology for Gigabit scale DRAM contacts. By combining with ECR TiN/Ti-CVD, extremely low contact resistances of 296 and 350 for 0.3-m contact diameter with aspect ratio of 7 were realized on n+ and p+ diffusion layers, respectively. No leakage current was observed. By using this technology, a DRAM ULSI, which was planarized by Chemical Mechanical Polishing (CMP) and had deep contact holes with aspect ratio of 6, was successfully demonstrated.

	Key features/Claims	Relevant Text
IN1	A method of forming a contact, comprising: (Claims 1, 12)	A fully-dry cleaning technique with Ar/H2 Electron Cyclotron Resonance (ECR) plasma was developed as a low contact resistance metallization technology for Gigabit scale DRAM contacts. By combining with ECR TiN/Ti-CVD, extremely low contact resistances of 296 and 350 for 0.3-m contact diameter with aspect ratio of 7 were realized on n+ and p+ diffusion layers, respectively. No leakage current was observed. By using this technology, a DRAM ULSI, which was planarized by Chemical Mechanical Polishing (CMP) and had deep contact holes with aspect ratio of 6, was successfully demonstrated.

TABLE I EXPERIMENTAL CONDITIONS OF DIFFERENT ECR PLASMA CLEANING METHODS AND ECR TIN/Ti-CVD

		ECR gases			TiCl4	N ₂
		Ar(sccm)	H2(sccm)	content	(sccm)	(sccm)
	Ar ECR	290	0	100%Ar	-	-
ECR cleaning	Ar/H ₂ ECR	100-290	25-100	8-50%H2	-	-
cicaring	H ₂ ECR	0	100	100%H2	-	-
Ti-CVD		290	100		10	-
TIN-CVD		70-290	6-30	-	5-20	2-8

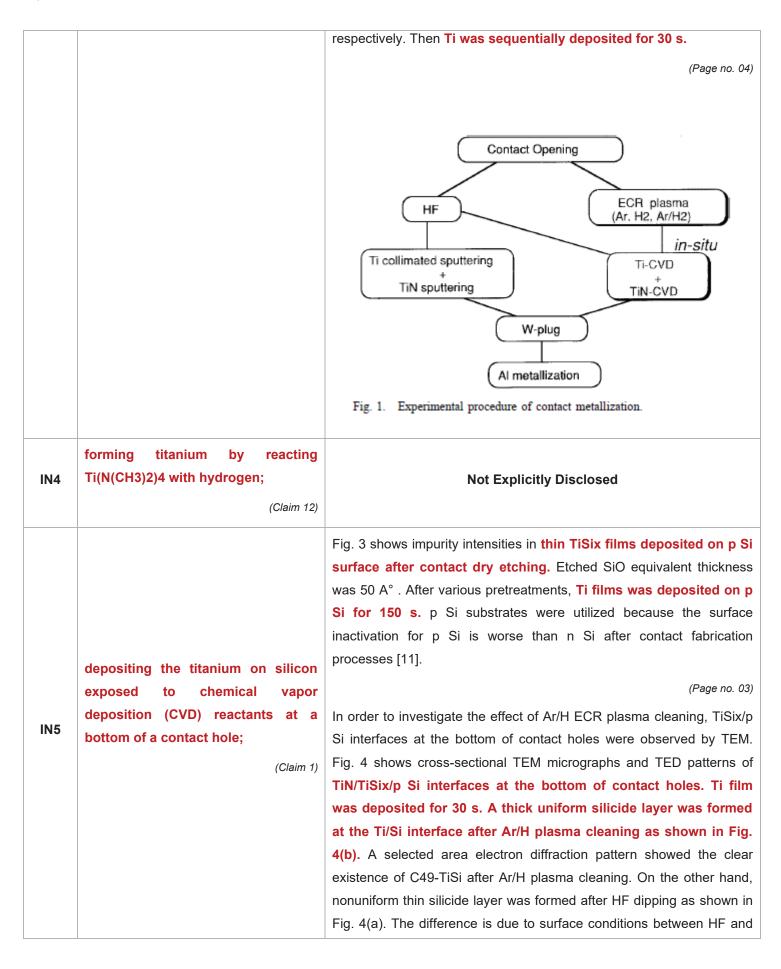
<u>Searcher's Comment:</u> In the mapped citation Ar/H mixture is used for the contact cleaning. However, contact cleaning with high density biased NF3 plasma is not explicitly mentioned.

Fig. 3 shows impurity intensities in thin TiSix films deposited on p Si surface after contact dry etching. Etched SiO equivalent thickness was 50 A°. After various pretreatments, Ti films was deposited on p Si for 150 s. p Si substrates were utilized because the surface inactivation for p Si is worse than n Si after contact fabrication processes [11].

(Page no. 03)

In order to investigate the effect of Ar/H ECR plasma cleaning, TiSix/p Si interfaces at the bottom of contact holes were observed by TEM. Fig. 4 shows cross-sectional TEM micrographs and TED patterns of TiN/TiSix/p Si interfaces at the bottom of contact holes. Ti film was deposited for 30 s. A thick uniform silicide layer was formed at the Ti/Si interface after Ar/H plasma cleaning as shown in Fig. 4(b). A selected area electron diffraction pattern showed the clear existence of C49-TiSi after Ar/H plasma cleaning. On the other hand, nonuniform thin silicide layer was formed after HF dipping as shown in Fig. 4(a). The difference is due to surface conditions between HF and Ar/H ECR cleaning. It is important for Ti- CVD to be grown on the clean surface. The impurities, such as carbon and oxygen, prevent TiSix from growing during Ti-CVD.

(Page no. 03)


Fig. 5 showed the effects of cleaning methods on contact resistance, in which four different cleanings were compared. In order to investigate the effect of contact cleaning at the bottom, shallow contact holes were used **and thin Ti film was deposited**. That is, depth of contact hole was fixed at 0.3 m and Ti film was deposited for 30 s. Etching time of Ar, H and Ar/H ECR plasma cleanings were 90, 120, and 30 s,

forming titanium;

IN₃

(Claim 1)

Ar/H ECR cleaning. It is important for Ti- CVD to be grown on the clean surface. The impurities, such as carbon and oxygen, prevent TiSix from growing during Ti-CVD.

(Page no. 03)

Fig. 5 showed the effects of cleaning methods on contact resistance, in which four different cleanings were compared. In order to investigate the effect of contact cleaning at the bottom, shallow contact holes were used **and thin Ti film was deposited.** That is, depth of contact hole was fixed at 0.3 m and Ti film was deposited for 30 s. Etching time of Ar, H and Ar/H ECR plasma cleanings were 90, 120, and 30 s, respectively. Then **Ti was sequentially deposited for 30 s.**

(Page no. 04)

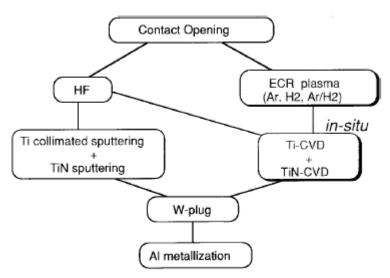


Fig. 1. Experimental procedure of contact metallization.

IN6

depositing the titanium on silicon exposed at a bottom of a contact hole and on an insulator exposed at sidewalls of the contact hole;

(Claim 12)

Fig. 3 shows impurity intensities in thin TiSix films deposited on p Si surface after contact dry etching. Etched SiO equivalent thickness was 50 A°. After various pretreatments, Ti films was deposited on p Si for 150 s. p Si substrates were utilized because the surface inactivation for p Si is worse than n Si after contact fabrication processes [11].

(Page no. 03)

In order to investigate the effect of Ar/H ECR plasma cleaning, TiSix/p Si interfaces at the bottom of contact holes were observed by TEM. Fig. 4 shows cross-sectional TEM micrographs and TED patterns of TiN/TiSix/p Si interfaces at the bottom of contact holes. Ti film

was deposited for 30 s. A thick uniform silicide layer was formed at the Ti/Si interface after Ar/H plasma cleaning as shown in Fig. 4(b). A selected area electron diffraction pattern showed the clear existence of C49-TiSi after Ar/H plasma cleaning. On the other hand, nonuniform thin silicide layer was formed after HF dipping as shown in Fig. 4(a). The difference is due to surface conditions between HF and Ar/H ECR cleaning. It is important for Ti- CVD to be grown on the clean surface. The impurities, such as carbon and oxygen, prevent TiSix from growing during Ti-CVD.

(Page no. 03)

Fig. 5 showed the effects of cleaning methods on contact resistance, in which four different cleanings were compared. In order to investigate the effect of contact cleaning at the bottom, shallow contact holes were used **and thin Ti film was deposited.** That is, depth of contact hole was fixed at 0.3 m and Ti film was deposited for 30 s. Etching time of Ar, H and Ar/H ECR plasma cleanings were 90, 120, and 30 s, respectively. Then **Ti was sequentially deposited for 30 s.**

(Page no. 04)

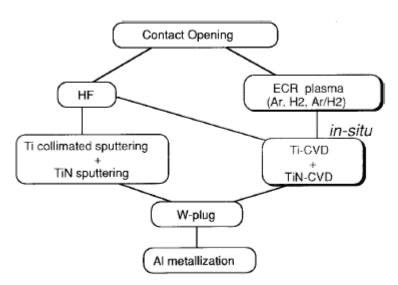


Fig. 1. Experimental procedure of contact metallization.

<u>Searcher's Comment:</u> The mapped citation discloses titanium deposition on contact hole. However, its deposition on an insulator exposed at sidewalls of the contact hole is not explicitly mentioned.

IN7

depositing titanium nitride on the titanium;

Ti film was deposited by ECR plasma, with TiCl , H and Ar gases. And then adding N , TiN film was also deposited at 620 C and 2.8 kW

(Claims 1, 12)

microwave power. As a reference for CVD, TiN/Ti sputtering was carried out. Ti film was deposited by using 2:1 collimator at 400 C and 20 kW power. Then TiN film was deposited by conventional reactive sputtering at 500 C and 6 kW power, with nitrogen gas flow of 4 sccm. Ti and TiN deposition thickness were 1200 °A and 1000 A°, respectively. The deposition pressure was 3 mtorr. Blanket tungsten (W) deposition and its etch back were used for filling contact holes. Finally, Aluminum (AI) was deposited for metallization.

(Page no. 02)

TiN film has been widely used as a barrier and an adhesion layer prior to blanket tungsten deposition. Since conventional TiN plasma CVD gave poor bottom coverage, so it causes barrier property degradation as the contact aspect ratio increases. Therefore, in order to study TiN barrier property against WF during W-CVD, the influence of TiN bottom coverage deposited by ECR CVD on deep contact holes is investigated. First, we evaluated TiN barrier property to WF. Then we improved TiN bottom coverage.

(Page no. 04)

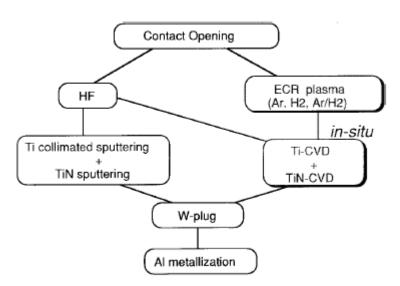


Fig. 1. Experimental procedure of contact metallization.

IN8

annealing the titanium nitride using rapid thermal annealing; and

(Claim 1)

TiN film was deposited by ECR plasma, with TiCl4, H, Ar and N at 620 C and 2.8 kW microwave power. Deposition pressures were changed. The thickness of BPSG/HTO films used in this experiment was 2.1 m. It is found that TiN bottom coverages were improved by decreasing the deposition pressures because the directionality of molecules or atoms was changed.

		(Page no. 05)
		Searcher's Comment: The mapped citation discloses TiN film
		deposition by ECR plasma, with TiCl4, Ar and N at 620 C.
		However, annealing the titanium nitride using rapid thermal
		annealing is not explicitly mentioned.
IN9	annealing the titanium nitride; and (Claim 12)	TiN film was deposited by ECR plasma, with TiCl, H, Ar and N at 620 C and 2.8 kW microwave power. Deposition pressures were changed. The thickness of BPSG/HTO films used in this experiment was 2.1 m. It is found that TiN bottom coverages were improved by decreasing the deposition pressures because the directionality of molecules or atomswas changed. (Page no. 05)
		TiN film has been widely used as a barrier and an adhesion layer prior to blanket tungsten deposition. Since conventional TiN plasma CVD gave poor bottom coverage, so it causes barrier property degradation as the contact aspect ratio increases.
		(Page no. 04)
IN10	filling the contact hole with tungsten. (Claim 1)	Ti film was deposited by ECR plasma, with TiCl, H and Ar gases. And then adding N, TiN film was also deposited at 620 C and 2.8 kW microwave power. As a reference for CVD, TiN/Ti sputtering was carried out. Ti film was deposited by using 2:1 collimator at 400 C and 20 kW power. Then TiN film was deposited by conventional reactive sputtering at 500 C and 6 kW power, with nitrogen gas flow of 4 sccm. Ti and TiN deposition thickness were 1200 °A and 1000 A°, respectively. The deposition pressure was 3 mtorr. Blanket tungsten (W) deposition and its etch back were used for filling contact holes. Finally, Aluminum (Al) was deposited for metallization.
		(Page no. 02)
IN11	filling the contact hole with a plug material.	TiN film has been widely used as a barrier and an adhesion layer prior to blanket tungsten deposition . Since conventional TiN plasma CVD gave poor bottom coverage, so it causes barrier property degradation as the contact aspect ratio increases.
		(Page no. 04)
	(Claim 12)	Ti film was deposited by ECR plasma, with TiCl, H and Ar gases. And then adding N, TiN film was also deposited at 620 C and 2.8 kW microwave power. As a reference for CVD, TiN/Ti sputtering was

carried out. Ti film was deposited by using 2:1 collimator at 400 C and 20 kW power. Then TiN film was deposited by conventional reactive sputtering at 500 C and 6 kW power, with nitrogen gas flow of 4 sccm. Ti and TiN deposition thickness were 1200 °A and 1000 A°, respectively. The deposition pressure was 3 mtorr. Blanket tungsten (W) deposition and its etch back were used for filling contact holes. Finally, Aluminum (Al) was deposited for metallization.

(Page no. 02)

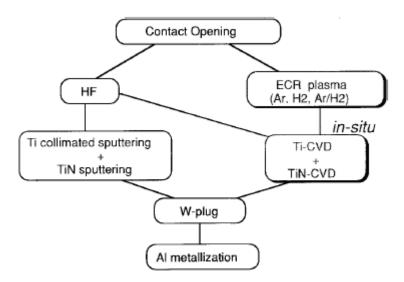
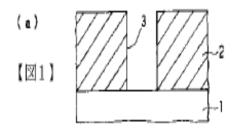


Fig. 1. Experimental procedure of contact metallization.

3. Prior Art Results (35 U.S.C. 103)

Note 1: As per our interpretation, the identified citations may be used in the following combination to anticipates the atleast one or more target independent claims of the subject patent.

Note 2: We have also analyzed and provided those citations separately which are individually relevant to anticipates the atleast one or more target independent claims of the subject patent.


	to anticipates the atleast one or more target independent claims of the subject patent.					
Prior	Prior Art Reference No. 1					
Publ	ication No.	US5xxxx2	A Application No.	US199xxxxx	Priority No.	US199xxxxx07
Title		Colorimetric imaging				
Publ	ication Date	Application Priority Date Date				
Assi	gnee	Color And				
Inve	ntor(s)	Alston				
Fami	ly Member(s)	None				
Prior	Art Reference N	No. 2				
Publication No. US5xxxx2		A Application No.	US199xxxxxx	Priority No.	US199xxxxx07	
Title	Colorimetric imaging					
Publication Date			Application Date		Priority Date	
Assignee Color And						
Inventor(s) Alston						
Fami	ly Member(s)	None				
Key features/Claims		\$	Identified Patent Numbe	r : USX47XXX	Identified Pa	tent Number :
A method of forming a contact, comprising: (Claim 10)		Description: This object is achieved method for producing correctures for VLS semiconductor substantial embodiment, the method steps of applying a batthe surface of the substrate and applying	onductive layers I circuits on a crate. In one distages are the arrier layer onto semiconductor	the conformality of an ECR plasma object of the proprovide the wiri which improves contact	nt invention improves of the Ti film formed by CVD method, and an esent invention is to ng formation method the reliability of a part. act hole embedding	

layer onto the barrier layer. Further method stages consist of the steps of applying a contact layer before applying the barrier layer, and/or cleaning the surface of the semiconductor substrate before applying the barrier layer or the contact layer, and/or applying a layer that supplies alloy constituents before, after or in interaction with the interconnect layer, and/or providing temperature treatment.

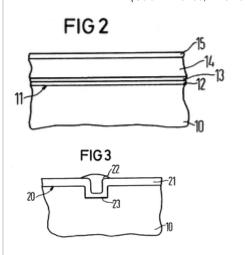
(Column no. 02; Line no. 54)

process working-example 1 this example, After forming a Ti film on condition of TiCl₄/H₂ flow rate =0.8 with an ECR plasma CVD method, it is the example which similarly formed the TiN film continuously with the ECR plasma CVD method, and embedded the contact hole with the aluminum-1% Si eventually. This process is described referring to Fig.1. As the sample wafer used by this example is shown in Fig.1 (a), the opening of the contact hole 3 with an opening diameter of about micrometer is carried out to the SiO2 interlayer insulation deposited on Si substrate 1 at a thickness of about 1 micrometer. Therefore, although the aspect ratio of this contact hole 3 is three or more, it is compressing and expressing the aspect ratio for the sake of illustrated convenience in Fig.1.

performing contact clean with high density plasma;

(Claim 10)

(b1) Pre-treatment of the surface:


In the first process chamber 1 which is filled with Ar, the surface 20 to be coated is cleaned by being bombarded with, for example, low-energy argon ions (approximately 100 eV); the natural oxide is thereby removed, particularly in the later through hole region and on

Not Disclosed

the polysilicon of gate contactings. Simultaneously with this cleaning of the surface, an incorporation of argon atoms of approximately <1013 atoms per cm2 occurs. The silicon is pre-amorphized. A uniform silicidation of the layers is thereby achieved independently of the doping.

(Column no. 08; Line no. 50)

forming titanium by reaction of Ti(N(CH3)2)4 with hydrogen;

(Claim 10)

IN3

Not Disclosed

For improving the electrical contact with the underlying silicon regions, example, a titanium layer is applied as contact layer. This can implemented with known sputtering methods or CVD methods; the process chamber is correspondingly constructed based on the desired manufacturing method. Given utilization of a CVD method, a suitable initial compound containing titanium is introduced into the process chamber with a carrier gas or by imbibition and is thermally excited given a process pressure of 0.1 through 100 mbar (10 through 10,000 Pa) and given a temperature of approximately 200° C. through 450° C. An excitation with a plasma can additionally be provided.

he organic, nitrogen containing

titanium compound is introduced into the chamber by means of a carrier gas (such as H2, N2, Ar, He) or by suction. Furthermore, H2, N2 and NH3 can be introduced into the chamber as process gases.

For instance, the following classes of substances can be considered for use as initial substances;

- 1. Ti(NR2)4, where R represents alkyl, aryl or CF3;
- 2. Ti(NHR)4, where R represents alkyl, aryl or CF3;
- 3. Ti(NR2)2 R'2, where R represents alkyl, and R' represents alkyl, aryl or CF3.

depositing the titanium on silicon exposed to CVD reactants at a bottom of a contact hole;

(Claim 10)

IN4

For improving the electrical contact with the underlying silicon regions, for example, a titanium layer 12 approximately 10 through 100 nm thick is applied as a contact layer. This can be implemented with known sputtering methods or CVD methods; the process chamber 2 is correspondingly constructed based on the desired manufacturing method. Given utilization of a CVD method, a suitable initial compound containing titanium is introduced into the process chamber 2 with a carrier gas or by imbibition and is thermally excited given a process pressure of 0.1 through 100 mbar (10 through 10,000 Pa) and given a temperature of approximately 200° C. through 450° C. An excitation with a plasma can additionally be provided.

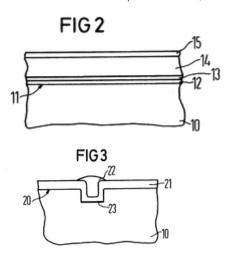
(Column no. 05; Line no. 54)

In another chamber or in the same

25

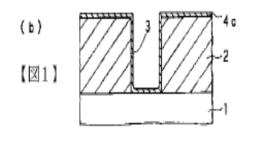
Claims:

[Claim 1]A wiring formation method making flow rate of halide gas of the aforementioned IVa group element, and H2 or more into 0.4 in a wiring formation method which forms a thin film of an IVa group element on a substrate while returning halide gas of an IVa group element by H2 with an ECR plasma CVD method.


Description:

The wiring formation method of the present invention is what is proposed in order to attain the above-mentioned purpose, When forming the thin film of an IVa group element on a substrate, returning the halide gas of an IVa group element by H2 with an ECR plasma CVD method, flow rate of the halide gas of the aforementioned IVa group element and H2 is made or

chamber of the high-vacuum system, the metal laver 21 required for the formation of the silicide is deposited on the newly cleaned surface by sputtering from a high-purity metal target without vacuum interruption. Also the use of CVD for depositing e.g. the Ti metal layer is within the scope of the invention. The layer thickness dependent on the geometrical relationships of the through hole, on the doping profile as well as on the pre-treatment and typically lies between 40 nm and 80 nm.


(Column no. 08; Line no. 62)

more into 0.4.

three kinds, Ti, Zr (zirconium), and Hf (hafnium), when forming a Ti film using TiCl₄ gas especially, a practically important process can be realized contact hole embedding process working-example 1 this example, After forming a Ti film on condition of TiCl4/H2 flow rate =0.8 with an ECR plasma CVD method, it is the example which similarly formed the TiN film continuously with the ECR plasma CVD method. embedded the contact hole with the aluminum-1% Si film eventually.

Although an IVa group element is

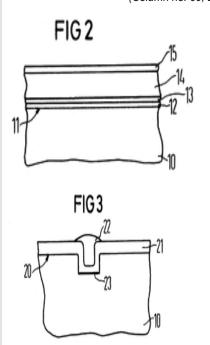
filling the contact hole with a plug material.

(Claim 10)

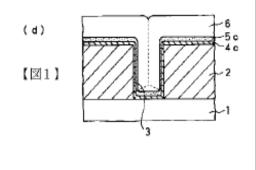
IN₅

The application of the aluminum layer 14 with CVD occurs in the temperature range from 200° through 450° C. at a pressure of 0.1 mbar through 100 mbar (10 through 10,000 Pa). An organic aluminum compound 40 is utilized as an initial substance. for example dimethylaluminumhydride HAI (CH3)2, trimethylamine aluminum hydride A1H3, N(CH3)3 or triethylaluminum Al(Et)3 or the like.

(a4) Applying a CVD aluminum layer 14:


(Column no. 06; Line no. 67)

For example, if it grows up that a Ti film is not conformal and granular under a certain conditions, since the TiN film which grows on it succeeds the surface profile of a Ti film and grows, it will increase the surface unevenness of a barrier metal further. As a result, problems, like a crack occurs in the bottom corner part of a contact hole, or the embedding of the contact hole by the upper wiring material of a post process becomes difficult arise. Since a Ti film is indispensable in order to secure the ohmic nature of contact, the


(b4) Selective metal deposition: Again without interrupting the high-vacuum, a selective metal 22 deposition of, for example, tungsten, copper or aluminum can now be implemented with a CVD process on the newly silicized contacts 23 without nucleation delay and with excellent selectivity. To that end, a further chamber of the high-vacuum system and a selective deposition process in conformity with the prior art is utilized.

(Column no. 09; Line no. 13)

conformality of this Ti film serves as a key which influences the reliability of a contact part.

The contact hole 3 in which the good barrier formed metal was mentioned above was able to be uniformly embedded by the upper wiring layer 6, as shown in Fig.1 (d). As the upper wiring layer 6 at this time, the aluminum-1% Si film formed by elevated-temperature sputtering process, for example or W (tungsten) film formed by a blanket CVD method could be used, and the result with good all was obtained.

4. Other Shortlisted Broad References

Sr. No.	Citation No.	Title OR Derwent Title	Family Members
1.	<u>US5239625A</u>	Apparatus And Method To Merge Images Rasterized At Different Resolutions	US5239625A_ EP575483A1 EP575483A4 IL101138D0 JP6505845A_ WO1992015958A1
2.	<u>US4467525A</u>	Automated Sign Generator	US4467525A_ AT56177T_ AT56648T_ AT56908T_ AU198425638A_ AU563752B2 CA1195233A1 DE3381863D1 DE3381896D1 DE3381914D1 DK167604B1 DK198302875A_ DK198302875D0 EP101814A2 EP101814A3 EP101814B1 EP276026A2 EP276026A3 EP276026B1 EP276027A2 EP276027A3 EP276027B1 ES198406269A1 ES198406928A1 ES523545D0 ES527910D0 FI198302081A_ FI82895B_ FI82895C_ FI832081A0 JP2109561C_ JP5050395A_ JP59064300A_ JP6030048B_ JP6098594B_ NO169033B_ NO169033C_ NO198302142A_
3.	<u>US5061063A</u>	Methods And Apparatus For Optical Product Inspection	US5061063A_ AU199064548A_ AU644107B2 BR199005509A_ CA2028716A1 EP426310A2 EP426310A3 JP3224068A_
4.	IT198748271D0	Stazione Di Lavoro Computerizzata Per L'approntamento E/O Elaborazione Di Bozzetti Per Oggetti Di Abbigliamento O Simili	IT198748271D0 EP302843A2 EP302843A3 IT1211696B_
5.	<u>US6181439B1</u>	Apparatus And Techniques For Computerized Printing	US6181439B1 AT151583T_ AT156642T_ AT197362T_ CA2035658A1 CA2035666A1 CA2059193A1 CA2059193C_ DE69125519D1 DE69127151D1 DE69127151T2 DE69231540D1 DE69231540T2 DE69231540T3 DK495563T3 DK495563T4 EP449407A2 EP449407A3 EP449407B1 EP475554A2 EP475554A3 EP475554B1 EP495563A2 EP495563A3 EP495563B1 EP495563B2 ES2152223T3 ES2152223T5 IL93274A_ IL93274D0 IL93493A_ IL93493D0 I IL96816A_ IL96816D0 IL96829A_

			IL96829D0 IL96955D0 IL96957A_ IL96957D0
			JP5153380A_ JP7064525A_
			US20020012130A1 US20030090725A1
			US20030123090A1 US20030123091A1
			US20040036918A1 US20040079253A1
			US20050030561A1 US5296935A_
			US5339176A_ US5615282A_ US5875288A_
			US6545772B2 US6856419B2 US6856424B2
			US7130079B2
	110407505A	Diamley Drangers Cycles	US4075695A_ CA1091354A1 DE2724199A1
6.	<u>US4075695A</u>	Display Processor System	DE2724199C2 GB1579643A_
7.	US4025946A	Method And Apparatus For	
		Generating Graphic Designs	US4025946A_
		System And Method For	
8.	<u>US5467443A</u>	Automatically Generating	
		Derived Graphic Elements	US5467443A_
		Method And Apparatus For	US4897802A_ AU198780937A_ AU598866B2
9.	<u>US4897802A</u>	Preparing And Displaying Visual	
		Displays	JP63226685A_ MX161946A_
10.	10. EP544255A2 Document Processing Method		EP544255A2 EP544255A3 JP5151254A_
		And System	US5813018A_
		Component Surface Distortion	US5243665A_ CA2036687A1 EP445697A2
11.	<u>US5243665A</u>	Evaluation Apparatus And	EP445697A3 FI199101140A_ FI911140A0
		Method	IL97224A_
			TR27885A_
	ID04004044	Objective Element Designating	
12.	<u>JP3198164A</u>	System In Interactive Graphic	
		Processing	JP3198164A_ JP02937374B2
		Method And System For	
13.	<u>US4800510A</u>	Programmed Control Of	
		Computer Generated Graphics	11040005404
		Layout	US4800510A_
14.	<u>US4254416A</u>	Variable Size Character	US4254416A_ CA1084641A1 DE2724158A1
	_	Generator	GB1579642A_

5. Conditions, Limitations and Scope of Search/Disclaimer

Data is on an "as is where is basis"

Talwar and Talwar Consultants is hereinafter referred to as TT Consultants or Consultant.

Data is as a result of an online search using online databases; we are not responsible for any errors in databases or any of the patents being left out while searching the said databases.

Family member data has been sought from INPADOC.

In selecting information sources and carrying out the search we use all caution possible.

However, we cannot guarantee you the correctness or completeness of the data we receive.

Only those documents which have already been published can be searched.

Search results will always be limited by what is available at the time of your request. In order to stay within the cost limits.

No independent verification of the results as a result of the database can be carried out.

It is not possible for us to predict the exact life of a patent so filing dates+ 20 years and priority dates +20 years is being stated on request.

We have no specific access to any other databases but Orbit/Thomson Innovation/ Delphion/ CIPO/AUSPAT and data is being reproduced from these databases only.

Talwar and Talwar Consultants is not engaged in practice of law and the reports provided as a result of the engagement will be an expression of technical understanding formed within the estimated time and within the cost limitations, further, matters of court and litigation are based upon several factors beyond the scope, domain and understanding of Talwar and Talwar Consultants. The report and the methodology in preparing the said report provided by the Consultant will be subject to review by an attorney authorized to practice in the relevant jurisdiction.

Limited Liability: - The Consultant (TT Consultants) shall not be liable beyond what the Consultant has charged for the Engagement, further, all the search/analysis is being undertaken by the consultant using online tools and the consultant is not liable in total or in part for any loss due to database/logical errors.

Talwar And Talwar Consultants Pvt Ltd (hereinafter referred to as TT Consultants) is not a law firm. No employee, director, agent, or officer of TT Consultants provides legal advice in any domestic or foreign jurisdiction. TT Consultants is NOT engaged in the practice of law in any domestic or foreign jurisdiction. Technical and Para Legal support services are provided and performed by TT Consultants exclusively at the request of qualified attorneys and Patent agents duly licensed to practice before the USPTO and other patent offices. TT Consultants does not provide legal services for non lawyers. Services provided to non lawyers are merely informational and/or technical and is not to be considered as legal advice.

TT Consultants make no warranty or representation as to the accuracy, completeness or correctness of any materials contained within the website or as to whether the provision of the website will be uninterrupted or error free or that all errors in the materials contained within the website will be corrected.

TT Consultants will not be liable for (i) any corruption, alteration, damage, loss or mistransmission (as applicable) of your or any third party's data, software, hardware or systems; and (ii) loss or damage resulting from the inadequacy of security of data during transmission via public electronic communications networks or facilities.

This document may contain internet sites operated by third parties. Where such links exist they are provided for your convenience only.

TT Consultants do not control such internet sites, and is not responsible for their contents.

TT Consultants inclusion of links to such internet sites in the website does not imply any endorsement of the material on such internet sites or any association with their operators and TT Consultants makes no warranties in respect of such internet sites.

TT Consultants is an information provider and does not provide legal, financial or other professional advice. The materials contained in the website are for general information purposes only, are not intended to constitute legal or other professional advice, and should not be relied on or treated as a substitute for specific advice relevant to particular circumstances. Neither Thomson scientific nor any of its affiliates or third party suppliers shall be liable for any loss that may arise from any reliance by you, your employer or client, or any other third party, on the materials contained in the website.

To the maximum extent permitted by law, in no event shall we, our affiliates be liable to you for any incidental, consequential, indirect, or special damages, even if we, our affiliates or third party suppliers have been advised of the possibility of such damages. The maximum aggregate liability of Thomson scientific, its affiliates and third party suppliers arising out of or in connection with these terms of use or the provision of the website shall be limited to the fee paid by you.

6. Patent & Non-Patent Databases

Office de la propriété intellectuelle du Canada

An Agency of Industry Canada

Un organisme d'Industrie Canada

Non-Patent Search Databases				
NCBI	Europe PMC	HubMed		
EMBASE- ELSEVIER	Biological Abstracts	PubMed		
The European Nucleotide Archive (EMBL-EBI)	DNA Data Bank of Japan (DDBJ)	UniProt		
InterPro	Wiley Online Library	Taylor & Francis Online		
SureChEMBL	Molbase	PubChem		
ChemSpider	eMolecules	Cambridge Scientific Abstracts		
British Dental Journal	Dental Materials Journal	European Journal of Prostodontics		
Nature	Digital Library	Biomicrofluidics (Pub: AMER INST PHYSICS)		

Microfluidics and Nanofluidics (Pub. SPRINGER HEIDELBERG)	Onesearch	Research Gate
SAE	Onepetro	ProQuest
IMechE Journal Collection Archive (SAGE)	Academia	OSTI.GOV
ASME	NTRS	EBSCOhost
NTRL	SCOPUS	TRID
SIAM	OpenStax	AAPG
Jurn	Deepdyve	Wiley
S	ome Major Standards Expertise	2
ETSI	3GPP	IEEE
IETF	OMA	ITU
DICOM	SPIE	DLNA
HGI	OIPF	Broadband Forum
W3C	AVS	MPEG
	Non-Patent Databases	
<u>Citeseerx</u>	Semiconductor Engineering	<u>IOP Science</u>
<u>Hindwai</u>	AIP Citation	<u>SPIE</u>
<u>EE Times</u>	<u>Embedded</u>	Evaluation Engineering
Electronic Design	Chip Design	EIN Semiconductor News

<u>SEMI</u>		Power Electronics	<u>SemiWiki</u>
Semi Accurate		<u>ECNMag</u>	<u>Semico</u>
<u>AnySilicon</u>		ELE Times <u>Digitimes</u>	
Sr. No.	Database Name	Comr	nents
1.	<u>IEEE Xplore</u>	A research database for discovery and access to journal articles, conference proceedings, technical standards, an related materials on computer science, electrical engineering and electronics, and allied fields.	
2.	ACM Digital <u>Library</u>	Electronic archive of academic	journals in many fields.
3.	<u>ResearchGate</u>	Electronic archive of academic journals in many fields.	
4.	<u>Springer</u>	Electronic archive of academic journals in many fields.	
5.	<u>IP.Com</u>	Multilingual source of unique and rare technical disclosures and other non-patent literature.	
6.	XLPAT Non-Patent Search	Integrated non-patent search platform for accessing multiple digital libraries	
7.	<u>CrossRef</u>	Search CrossRef's database of 64 million records for autitles, DOIs, ORCIDs, ISSNs, FundRefs, license URIs, etc	
8.	<u>JSTOR</u>	Electronic full text archive of academic journals in many fields.	
9.	<u>ScienceDirect</u>	Electronic archive of academic journals in many fields.	
10.	<u>Knovel</u>	,	ence works and databases from rofessional societies through a

		single interface.	
11.	Microsoft Academic	Electronic full text archive of academic journals in many fields.	
12.	arXiv.org	Open access to thousands of e-prints in Physics, Mathematics, Computer Science, Quantitative Biology, Quantitative Finance and Statistics	
13.	Open Access Theses and Dissertations	Open access graduate theses and dissertations published around the world.	
14.	<u>OpenThesis</u>	Free repository of theses, dissertations, and other academic documents, coupled with powerful search, organization, and collaboration tools.	
15.	Oxford Journals	Publishes the highest quality journals and delivers this research to the widest possible audience.	
16.	<u>Nature</u>	Electronic archive of academic journals in many fields.	
17.	<u>Elsevier</u>	Electronic archive of academic journals in many fields.	
18.	Web of Science	Online subscription-based scientific citation indexing service maintained by Thomson Reuters that provides a comprehensive citation search. It gives access to multiple databases that reference cross-disciplinary research, which allows for in-depth exploration of specialized sub-fields within an academic or scientific discipline.	
19.	Google Scholar	A web search engine that indexes the full text or metadata of scholarly literature across an array of publishing formats and disciplines. Google Scholar index includes most peer-reviewed online academic journals and books, conference	

		papers, theses and dissertations, preprints, abstracts, technical reports, and other scholarly literature, etc.
20.	<u>USENIX</u>	The Advanced Computing Systems Association that supports operating system research
21.	<u>SNIA</u>	Storage Networking Industry Association specializes in the field of storage and information management solutions

^{(*}The list is suggestive as per the technology domain)

Appendix I – Search Details

1.1 Search Phases

Phases	Steps	Phase Details
	1	Reading the subject patent/application and developing understanding over the invention/patent Optional but recommended – Pre-search initiation call to bring search teams understand at par with Attorney requirement.
	2	Reading the file history of the subject patent, especially the final/non-final rejections, applicant's argument and remarks and notice of allowances.
Understanding Development	3	Key Features of the invention are identified based on the novel aspect of the invention/Client's requirement.
Phase	4	Relevant key words and their logical variations are determined based on the key features and the technology domain of the invention.
	5	Checking if any prior litigation OR re-exam happened for the subject patent OR not and identifying references which were cited in those litigations OR re-examination and analyzing those in detail to combine with other references to have stronger 103 art.
	6	Date limitation for the search process is confirmed from the Project Manager/client.
by AI, NLP, Cognitive computing arm we perform a first pass automated minutes this provides valuable insignation. Automation Phase 7 Automation Phase provided by automation allows us to		Using our proprietary automated Invalidator+ module which is backed by AI, NLP, Cognitive computing and other add-ons like Corpus etc., we perform a first pass automated search which in a matter of few minutes this provides valuable insights into the relevant art, assignees, inventors, jurisdictions, classifications, keywords etc. The head-start provided by automation allows us to quickly focus the search which, in turn, allows our talented teams to devote more time to the manual investigation.

NOT Query formation (excluded from scope of search)	8	Family members of the subject patent and its Backward Citations are identified and are framed as a "NOT query" so as to exclude these patents from the search process. This is again subjective to client's approval depending on if it's a litigation case OR IPR needs to be filed for the subject patent. Each key string is combined with the "NOT Query" so as to exclude the patents associated with the "NOT query" Already identified references (<i>if any</i>) along with their family members will be excluded from scope of the search to avoid any duplicity and save time.	
Keyword Based scope (broad to narrow) are formed in different search fiel		Different key strings verified by the project manager with variable scope (broad to narrow) are formed in different search fields on patent databases with a global coverage using Orbit, TI, PAJ, AUSPAT, CIPO, CNPAT, ESPACENET, TIPO, SIPO, INPADOC, etc.	
Classification	10	Relevant USC, CPC, ECLA & IPC classes are identified.	
based Search	11	Independent full classification (USC, CPC, ECLA & IPC) search strings were formed.	
Assignee Based Search	12	Assignees of the relevant patents are identified and a search with various scope (combination with keywords, classes etc.) is conducted to identify relevant patents associated with these assignees. Identification of top companies/ universities/ inventors/ scientists operating in the domain (top patent applicants, top product sellers, top inventors, etc.) Perform dedicated search on company/university websites to identify references dating back the priority date of the subject patent	
Inventor Based Search	13	Inventors of the relevant patents are identified and a search with various scope (combination with keywords, classes etc.) is conducted to identify relevant patents associated with these inventors.	

	14	Narrow keywords and broad USC, CPC, ECLA & IPC or all class combination key strings were formed.	
Combination search	15	Broad keywords and narrow USC, CPC, ECLA & IPC or all class combination key strings were formed.	
	16	Various Boolean searching options are used to combine two or more search strings or search options.	
Inequitable Conduct Search = A not B	17	Identify references which were cited during prosecution in foreign countries but not cited during prosecution in US. A: "Backward citations and their family members" of the family members of the subject patent B: "Backward citations and their family members" of the subject patent	
	18	Forward citations (falling under the date limitation) of the backward citations of the subject patent are analyzed.	
Webbing	19	Backward citations (falling under the date limitation) of the forward citations of the subject patent are analyzed.	
wessing	20	Forward and backward citations of the identified close citations are analyzed to identify any new relevant citations.	
	21	X-References of all backward PCT citations are also analyzed to identify any relevant reference.	
Foreign Language	22	The key words identified are translated in respective languages	
Based Search (Add-on)	23	Based on the native key words, search is conducted by in-house native searchers on the respective patent offices' websites	
Non-Patent Literature Search	24	Non-patent literature search with the date limitation is conducted using various keyword combination in different databases/ search engines such as Google, Google Scholars, Google Book, IP.com, IEEE, STN, Engineering Village, Springerlink, Citeseer, Science Direct, Clusty,	

	PCworld, etc.
	Dissertations & Thesis / Research Papers / University Portal – We
	analyze websites of various universities/ research institutes leading
	in the target technology domain. The information related to
	leading universities is referred using patent and non-patent
	literature published by the university / research institutes. We are
	capable to perform dedicated search on online repositories related
	to thesis, academic research documents, dissertations, etc. For
	example, we can refer EBSCO, Ethos, ProQuest, OpenThesis,
	university websites such as Harvard, Stanford, NUS, Oxford, MIT,
	Cambridge, etc.
	Conferences, Abstracts & Posters – We search all major web
	portals of leading conferences and related organizations (CES,
	ComSoc, Oracle Openworld, Google Next, Augmented World Expo,
25	Microsoft Academic, etc.)
	Products / Whitepapers – We also perform dedicated searches on
	web-portals of leading companies in the target technology domain.
	We scan through their blogs, whitepapers, product listings,
	datasheets, circuit diagrams, brochures, user manuals, news
	announcements related to new offerings/product launches,
	advertisements, etc.
	Non-patents cited in the patents – We also identify non-patent
	literature(s) cited in the potential and relevant patents in the
	target technology of interest.
	Web-Archive (Wayback machine) – leads generated in the
	abovesaid steps are passed through web-archive platforms such as way-back machine, to identify relevant evidences before the cut-
	off date.
26	The key strings used for identifying NPL are incorporated into the
	search report in the desired format.

Chandaud on Dring	27	Background study to identify relevant standard versions and/or standard setting organization (SSOs) corresponding to the technical field of subject matter before the earliest priority date of the subject patent by performing searches on the in-house developed dataset.		
Standard as Prior Art (including Draft	28	Identification of draft versions/submissions before the earliest priority date of the subject patent.		
Submissions)	29	Manual analysis of all the standards documents including the draft versions/submissions that are related to the subject matter technical field and are published before the search cut-off date (e.g. earliest priority date) considering the 1-year grace period for any submissions made by the patent owner.		
	30	All the identified relevant patent citations are analyzed and mapped with color mapping in accordance with the relevant texts and are provided in the report in the desired format.		
Report Making	31	All the identified relevant non-patent publications and standards are analyzed and mapped with color mapping in accordance with the relevant texts and are provided in the report in the desired format.		
	32	Indexing the relevant texts in the search report is done.		
	33	Highlighting the relevant text in the PDF references		
	34	The list of keywords, search strategies, assignees, inventors, classes used in the search process are incorporated into the search report		
	35	Key feature analysis of all prior art is provided		
Quality Assurance	36	The citations identified are verified (technical relevancy and other limitations such as date criteria, assignee, etc.) by the project manager before mapping it into the report.		
	37	Third Eye (verification of the project report) has to be done by the VP before delivering the search report with pdf references.		

	38	Search comments may be incorporated by the VP (Optional)
	39	Senior VP crosschecks the report quality and adherence to SOPs during the search
	40	Client queries regarding clarification of the technical relevancy and mapping of the citations, if required
Report Delivery	41	A formal report is sent to the client with the details of the references and their pdfs. Output file format: PDF/ MS Word/ MS Excel

^{*}This denotes our standard search strategy which is appropriately edited according to the scope of the search

Key words are extracted from the key features formed. A number of variations and synonyms of the key words are also identified and used in the search.

1.2 Search Keywords

The following key words and their logical variations were used for conducting prior art search:

Antenna	Display	Equipment
Channel	Screen	Apparatus
Transceiver	LCD	PDA
Aerial	Crystal	Telephone
MIC	Transmitter	Store
Catalog	Investment	Sell
Chart	I-Pad	Send
Client	Item	Server
Communication	Laptop	Several

1.3 Search Strings

A detailed report of the search criteria formed by the researchers is provided. This helps the client in verifying the effectiveness of the search.

a. Patent Search Strings

The following set of search techniques such as nested Boolean search, phrase search, synonyms and truncation search, patent classification search, citation search etc. are executed on following databases:

- 1. Orbit FAMPAT (DZ, AP, AT, AU, BY, BE, BA, BR, BG, CA, CN, CO, CR, HR, CU, CY, CZ, CS, DK, DO, EC, EG, SV, EE, EA, EP, FI, FR, DE, GR, GT, GC, HU, HK, IS, IN, ID, IE, IL, IT, JP, KG, KE, KP, KR, LV, LT, LU, MW, MY, MT, MD, MC, MN, MA, NI, NL, NZ, NO, OAPI, PA, PCT, PE, PH, PO, PT, RO, RU, Serbia and Montenegro, SG, SK, SI, ZA, ES, SE, CH, TW, TJ, TR, UA, GB, USA, U.S.S.R, UY, VN, YU, ZM, ZW); (Full-text included in FAMPAT in bold)
- **2.** Thomson Innovation (USG, USA, EPA, EPB, WO, JP, DEG, DEA, DET, DEU, GBA, FRA, KR, CN, CA and NPADOC);

3. PAJ: JP

Search Logic No.	Key Strings	Search scope	Number of Hits
	Orbit Search Strings		
L1	(((VIRTUAL OR ELECTRONIC????? OR ON_LINE OR INTERNET OR NET) 5D (SHOP???? OR STORE???? OR TRAD???? OR LAPTOP? OR ??PAD? OR PC OR ((DIGITAL OR ELECTRONIC) 2D DIARY)) AND (TEXT??? OR IMAGE? OR PHOTO????? OR PICTURE? OR INFORMAT???? OR DATA))/BI/SA/CLMS) AND PRD <= 199x-xx-xx	Databases: FAMPAT	97
L2	((((VIRTUAL OR ELECTRONIC????? OR ON_LINE OR INTERNET OR NET) 3D (LIST???? OR CATALOG???? OR DISPLAY? OR BULLETIN?????? OR CHART?)))/NOMT/CLMS AND	Databases: FAMPAT	154
L3	(TELECOMMUNICATION NEAR6 (SOFTWARE OR	Databases:	129

	APPLICATION)) AND (RECEIV* OR ACCEPT)/NOMT/SA/CLMS) AND PRD <= 199X-XX-XX	FAMPAT		
L4	(MOBILE*1 OR CELLULAR OR CELL OR RADIO* OR (WIRELESS OR HAND*1HELD) NEAR2 (DEVICE*1 OR APPARATUS*1 OR TOOL*1 OR EQUIPMENT*1 OR PHONE*1)) AND ((TRANSMIT*3 OR COMMUNICAT*3 OR SEND*3 OR RECEIV*3 OR TRANSCEIV*3) NEAR4 (DATA OR INTERNET OR WEB OR WAP OR VOICE OR AUDIO OR SOUND))/NOMT/SA/CLMS) AND PRD <= 199X-XX-XX	Databases : FAMPAT	493	
L5	Mobile/BI AND PRD <= 199x-xx-xx	Databases : FAMPAT	16123**	
L6	((SHOP???? OR BID???? OR BUY??? OR SELL??? OR PURCHAS???? OR MERCHAN????? OR AUCTION???? OR ORDER????))/BI/SA AND ((G06F+)/IC OR (715+)/PCLO) AND PRD <= 1996-03-22	Databases : FAMPAT	68233**	
L7	L5 and L6	Databases : FAMPAT	324	
	Thomson Search Strings			
L8	UC=((438680* OR 438681* OR 438682* OR 438683* OR 438684* OR 438686* OR 438618*)) AND PRD<=(199xxxxx) AND AIC=(H01L0021* AND C23C*);	Databases: USG, USA, EPA, EPB, WO, JP, DEG, DEA, DET, DEU, GBA, FRA, KR, CN, CA and INPADOC	548	
L9	UC=((438680* OR 438681* OR 438682* OR 438683* OR 438684* OR 438686*) AND 438618*) AND PRD<=(199xxxxx);	Databases: USG, USA, EPA, EPB, WO, JP, DEG, DEA, DET, DEU, GBA, FRA, KR, CN, CA and INPADOC	27	
	PAJ Search Strings			
L10	CTB=(TITANIUM OR SILICIDE OR SALICIDE) AND (PRECURSOR OR TETRACHLORIDE OR "TDMAT" OR TETRADIMETHYL) AND (NITRIDE AND TUNGSTEN) AND PD<=1997-08-21	Database: PAJ	9	

	CTB=("CVD" OR "PCVD" OR "PACVD") AND (TITANIUM		
L11	OR SILICIDE OR SALICIDE) AND (NITRIDE AND	Database: PAJ	71
	TUNGSTEN) AND PD<=1997-08-21		

Hits mark in (**) has not been analyzed but used in combination of strings to reduce irrelevancy.

<u>Note:</u> In addition to above queries, webbing (intelligence from backward and forward citations of the subject patent and other relevant patents) is also done.

b. Non-Patent Search Strings

The following key strings were used for conducting non-patent literature search on **IEEE,Google, Google scholar, Google books, Scirus** databases/ search engines.

Search Logic No.	Key Strings/Keywords	Database(s)/Search Engine(s)
NPL1	VENDOR COMPUTER VIRTUAL PRODUCT CATALOG SOFTWARE	
NPL2	DISPLAY PRODUCT SCREEN IMAGE TEXT SELECT* (REMOTE COMPUTER) (VENDOR OR SELL)	
NPL3	(PRODUCT OR GOODS) (MENU OR LIST OR INVENTORY OR DISPLAY) (SCREEN OR VIEW) (SOFTWARE) (PICK OR COMPAR*)	
NPL4	CUSTOMER PRODUCT REVIEW SCREEN COMPARISON INVENTORY (SOFTWARE OR SYSTEM)	IEEE, Google, Google
NPL5	(COMPUTER) AND (TEXT OR IMAGE OR PROFILE OR PICTURE) AND (BUYER OR CUSTOMER) AND (REVIEW OR PREVIEW OR COMPARE OR WATCH)	Scholar, Google Books, Scirus
NPL6	(ONLINE OR WEB OR CONNECTION OR NET) AND (INVENTORY OR ITEMS OR MENU OR CATALOG OR CATEGORY) AND (PRODUCT OR GOODS OR MERCHANDISE)	
NPL7	(INVENTORY OR ITEMS OR MENU OR CATALOG OR CATEGORY) AND (SOFTWARE) AND (BUY OR SELECT)	
NPL8	HIERARCHICAL MENU PRODUCT CATEGOR* (COMPUTER OR SOFTWARE OR PROCESSOR)	

1.4 Classification Based Search

The search was conducted on the following IPCs (International Patent Classifications), and US Classes:-

1. International Patent Classification (IPC):

Sr. No.	Class	Description
1.	D06F	Textiles; paper; treatment of textiles or the like; laundering; flexible materials not otherwise provided for; laundering, drying, ironing, pressing or folding textile articles
2.	D06F-035	Textiles; paper; treatment of textiles or the like; laundering; flexible materials not otherwise provided for; laundering, drying, ironing, pressing or folding textile articles; Washing machines, apparatus, or methods not otherwise provided for
3.	H04B000138	Transmission; Details Of Transmission Systems, Not Covered By A Single One Of Groups H04b 00300-H04b 01300; Details Of Transmission Systems Not Characterised By The Medium Used For Transmission- Transceivers, I.E. Devices In Which Transmitter And Receiver Form A Structural Unit And In Which At Least One Part Is Used For Functions Of Transmitting And Receiving
4.	H04M000100	Telephonic Communication; Substation Equipment, E.G. For Use By Subscribers

2. US Classification:

Sr. No.	Class	Description
1.	68/23.1	Textiles: Fluid Treating Apparatus; Machines Combined; With Liquid Extractor; Centrifugal Extractor (E.G., Centrifuge); With Means To Control Or Isolate Vibration
2.	379/179	Telephonic communications; Poly station line system (i.e., party line); Call alerting (e.g., ringing)
3.	379/252	Telephonic communications; Centralized switching system; With generating of call associated substation signal; For alerting signal at called station (e.g., ringing)

1.5 Assignee Name Based Search

The search was conducted for the following Assignee names

LG Electronics

Samsung

Panasonic

Toyota

IBM

Intel

Sumitomo

Benz

Ranbaxy

Mitsubishi

Suzuki

Assignee and inventor based searches help to cover the limitations (if any) of a key word based search

1.6 Inventor Name Based Search

The search was conducted for the following Inventor names -:

Uhlin, Göran

Kim, Jae Sin

Chang, Jae Won

Ito, Michiaki

Kim, Jin Soo

Lee, Hyun Moo

Appendix II – Country Codes

AD	Andorra	GH	Ghana	NE	Niger
ΑE	Arab Emirates	GI	Gibraltar	NF	Norfolk Island
AG	Antigua And Barbuda	GL	Greenland	NG	Nigeria
Al	Anguilla	GM	Gambia	NI	Nicaragua
AL	Albania	GN	Guinea	NL	Netherlands
AM	Armenia	GP	Guadeloupe	NO	Norway
AN	Neth. Antilles	GR	Greece	NP	Nepal
AO	Angola	GT	Guatemala	NZ	New Zealand
AR	Argentina	GY	Guyana	OM	Oman
AT	Austria	НК	China, Hong Kong S.A.R.	PA	Panama
AU	Australia	HN	Honduras	PE	Peru
AW	Aruba	HR	Croatia	PF	Fr. Polynesia
AZ	Azerbaijan	HT	Haiti	PG	New Guinea
ВА	Bosnia And Herzegovina	HU	Hungary	РН	Philippines
BB	Barbados	ID	Indonesia	PK	Pakistan
BD	Bangladesh	ΙE	Ireland	PL	Poland
BE	Belgium	IL	Israel	PT	Portugal
BG	Bulgaria	IN	India	PW	Palau
ВН	Bahrain	IQ	Iraq	PY	Paraguay
ВМ	Bermuda	IR	Iran	QA	Qatar
BN	Brunei	IS	Iceland	RO	Romania
во	Bolivia	IT	Italy	RU	Russian Federation
BR	Brazil	JM	Jamaica	SA	Saudi Arabia
BS	The Bahamas	JO	Jordan	SB	Solomon Islands
BW	Botswana	JP	Japan	SD	Sudan
BY	Belarus	KE	Kenya	SE	Sweden
ΒZ	Belize	KG	Kyrgyzstan	SG	Singapore
CA	Canada	KH	Cambodia	SI	Slovenia
CC	Cocos Islands	KN	Saint Kitts And Nevis	SK	Slovakia
CD	Democratic Republic Of Congo	KP	North Korea	SL	Sierra Leone
СН	Switzerland	KR	South Korea	SM	San Marino
CI	Ivory Coast	KW	Kuwait	SN	Senegal
CK	Cook Islands	KY	Cayman Islands	SR	Suriname
CL	Chile	KZ	Kazakhstan	SU	U.S.S.R.
CM	Cameroon	LA	Laos	SV	El Salvador
CN	China P.Rep.	LB	Lebanon	SY	Syria
СО	Colombia	LC	St. Lucia	SZ	Swaziland

CR	Costa Rica	LI	Liechtenstein	TC	Turks And Caicos Islands
CS	Czechoslovakia	LK	Sri Lanka	TD	Chad
CU	Cuba	LR	Liberia	TH	Thailand
CY	Cyprus	LT	Lithuania	TN	Tunisia
CZ	Czech Republic	LU	Luxembourg	TR	Turkey
DE	Germany	LV	Latvia	TT	Trinidad/Tobago
DK	Denmark	LY	Libya	TW	Taiwan
DM	Dominica	MA	Morocco	TZ	Tanzania
DO	Dominican Repl.	MC	Monaco	UA	Ukraine
DZ	Algeria	MD	Republic Of Moldova	UG	Uganda
EC	Ecuador	MG	Madagascar	UY	Uruguay
EE	Estonia	MH	Marshall Islands	UZ	Uzbekistan
EG	Egypt	MK	Macedonia, Former Yugoslav Rep.	VA	Vatican City State
ES	Spain	ML	Mali	VC	St. Vincent/ Grenadines
ES ET	Spain Ethiopia	ML MM	Mali Myanmar	VC VE	
	·				Grenadines
ET	Ethiopia	MM	Myanmar	VE	Grenadines Venezuela Virgin (British)
ET FI	Ethiopia Finland	MM MO	Myanmar Macau	VE VG	Grenadines Venezuela Virgin (British) Islands
ET FI FJ	Ethiopia Finland Fiji Falkland Islands	MM MO MQ	Myanmar Macau Martinique	VE VG VN	Grenadines Venezuela Virgin (British) Islands Viet Nam Vanuatu
ET FI FJ FK	Ethiopia Finland Fiji Falkland Islands (Malvinas)	MM MO MQ MR	Myanmar Macau Martinique Mauritania	VE VG VN VU	Grenadines Venezuela Virgin (British) Islands Viet Nam Vanuatu (New Hebrides)
ET FI FJ FK FO	Ethiopia Finland Fiji Falkland Islands (Malvinas) Faroe Islands	MM MO MQ MR MT	Myanmar Macau Martinique Mauritania Malta	VE VG VN VU YE	Grenadines Venezuela Virgin (British) Islands Viet Nam Vanuatu (New Hebrides) Yemen
ET FI FJ FK FO FR	Ethiopia Finland Fiji Falkland Islands (Malvinas) Faroe Islands France	MM MO MQ MR MT MU	Myanmar Macau Martinique Mauritania Malta Mauritius	VE VG VN VU YE YU	Grenadines Venezuela Virgin (British) Islands Viet Nam Vanuatu (New Hebrides) Yemen Yugoslavia
ET FI FJ FK FO FR GA	Ethiopia Finland Fiji Falkland Islands (Malvinas) Faroe Islands France Gabon	MM MO MQ MR MT MU MW	Myanmar Macau Martinique Mauritania Malta Mauritius Malawi	VE VG VN VU YE YU ZA	Grenadines Venezuela Virgin (British) Islands Viet Nam Vanuatu (New Hebrides) Yemen Yugoslavia South Africa
ET FI FJ FK FO FR GA GB	Ethiopia Finland Fiji Falkland Islands (Malvinas) Faroe Islands France Gabon United Kingdom	MM MO MQ MR MT MU MW MX	Myanmar Macau Martinique Mauritania Malta Mauritius Malawi Mexico	VE VG VN VU YE YU ZA ZM	Grenadines Venezuela Virgin (British) Islands Viet Nam Vanuatu (New Hebrides) Yemen Yugoslavia South Africa Zambia
ET FI FJ FK FO FR GA GB GD	Ethiopia Finland Fiji Falkland Islands (Malvinas) Faroe Islands France Gabon United Kingdom Grenada	MM MO MQ MR MT MU MW MX MY	Myanmar Macau Martinique Mauritania Malta Mauritius Malawi Mexico Malaysia	VE VG VN VU YE YU ZA ZM	Grenadines Venezuela Virgin (British) Islands Viet Nam Vanuatu (New Hebrides) Yemen Yugoslavia South Africa Zambia

About TT Consultants

Blend of Human & Machine Intelligence™

Dr. Nirmal Basi, CEO

Dr. Nirmal S. Basi has a PhD in Biochemistry and is an entrepreneur, inventor, as well being a registered patent agent for the United States Patent and Trademark Office (USPTO).

He has also worked as a Patent Examiner for over 13 years. He is assisting clients across the globe in their IP research related matters and he is redefining the way IP Research and Analytics are performed.

Komal Sharma Talwar, Founder

A serial entrepreneur in the field of patents and Founder and Director of a leading International Intellectual Property, Technology Consulting, and Analytics Firm – TT Consultants. She is also a co-founder of XLSCOUT – a Product company which is a technology search and analytics tool having the world's largest and most intelligent technology database.

Jitin Talwar, Founder

Experienced Patent Attorney, globally recognized entrepreneur and technology leader led early adoption of AI/ML and Deep Learning that led to founding of multiple start-ups including XLSCOUT.

He is Leading the use of Artificial Intelligence for Innovation, Machine Learning for Ideation and Blockchain in Innovation management.

TT Consultants is an International patent search and analytics company serving **900+ clients** around the world with accolades and credibility certifications from different known organizations. TTC has an experience of **9500+ client engagements** for several Fortune 100 Companies and top IP Law Firms across the globe. We have been working with major US law firms and corporations on litigation and IPR cases, helping them in patent protection and portfolio development, patent monetization and licensing, R&D activities and patent litigation & IPRs to knock out threatening patents.

With automation involved in our manual processes, our teams get valuable insights into the domain very quickly and the headstart provided by automation allows our talented teams to devote more time to the manual investigation which, in turn, lead to a thorough search.

Our expertise across varied technology domains help us understand the key challenges faced by our clients enabling them to maximize their businesses potential. Our strength lies in the exceptionally talented and experienced professionals who work 24×7, ensuring quality outputs and quick turnarounds.

Reach Us

Contact us for more details

OUR OFFICES

INDIA

502-503 A- Tower A, 5th Floor, Bestech Business Sector- 66 Mohali, Punjab,

India-160055.

USA - WASHINGTON D.C

1701 Pennsylvania Avenue, Suite 200, NW, Washington DC. 20006, USA.

USA - SUNNYVALE

440 N Wolfe Rd Sunnyvale, CA 94085, USA

TAIWAN - TAIPEI

Hun, CIT, No.1, Yumen St., Zhongshan Dist., Taipei City 104, Taiwan **SCAN** TO FOLLOW US

CONTACT DETAILS

EMAIL US:

projects@ttconsultants.com j.talwar@ttconsultants.com nirmal.basi@ttconsultants.com

53 CONFIDENTIAL