DNA-Based Information Storage System: Need of 21st Century
- April 17, 2017
Introduction
Digital information is accumulating at an astounding rate, straining our ability to store and archive it. It’s expected that human beings will generate around 16 trillion gigabytes of digital data by 2017, and most of the data will need to be archived: Think: legal, financial, medical records, and multimedia files as well. At present, data is stored on optical disks, tapes or hard drives in energy-hogging and warehouse-size data centers. These storage devices live for a few days to a few decades. If we talk about space consumed by these devices, of course, it’s a lot. In the era of Internet of things & Artificial intelligence, we need storage devices that could live longer. There’s no doubt about it, the world’s biggest technology firms are rushing to build data centers all over the globe. For a good reason: the Internet of Things revolution is going to produce ungodly amounts of data from sensors on our bodies and in our cars, homes, and offices.
According to Matt Starr, the chief technology officer of Spectra Logic, a tape cartridge is capable of storing data for about 30 years under certain conditions. But a more practical limit is 10 to 15 years, he says. It’s not that the data will disappear from the tape. Rather, the bigger problem is familiar to anybody who has come across an old eight-track tape or floppy disk that he no longer has a machine to play on. Starr also said that technology keeps moving, and data can’t be retrieved if the medium to read it is not available.
What is DNA-based storage?
Forget about the age old standard storage devices like Tape, or Magnetic Media or Semiconductor storage. They’re just spinning disks that make a lot of noise. These storage devices have a limited life span. DNA is so flexible that it can be used to create everything from an amoeba to a human, a dinosaur to a dandelion, and so small that the strands required to create all these life forms can be fitted into a single cell, a few micrometers large. DNA lasts for centuries if kept cold and dry. It could, in theory, pack billions of gigabytes of data into the volume of a sugar crystal.
Harvinder Singh
Recent Posts
Categories
- 3D Printing7 Posts
- 5G6 Posts
- AI & LLM25 Posts
- Archive Events24 Posts
- Automobile Industry25 Posts
- Biotechnology5 Posts
- Canada1 Posts
- Case Studies18 Posts
- Chemical8 Posts
- China5 Posts
- Competitor Benchmarking19 Posts
- Consumer Products47 Posts
- Corporate53 Posts
- Design Search5 Posts
- Electric Vehicles4 Posts
- Europe - UK2 Posts
- Events1 Posts
- Freedom to Operate25 Posts
- Geographical3 Posts
- Ideacue1 Posts
- Infringement Search55 Posts
- Intellectual Property (IP)198 Posts
- Invalidation22 Posts
- Inventor6 Posts
- IP Trends44 Posts
- IP Trends-Company35 Posts
- IP Trends-Technology1 Posts
- Japan2 Posts
- Landscape Analysis53 Posts
- Latest Technology84 Posts
- Life Sciences37 Posts
- M&A - Patent Due Diligence1 Posts
- Machine Learning6 Posts
- Market Research9 Posts
- Mechanical Engineering3 Posts
- Medical Devices3 Posts
- Mergers and Acquisitions5 Posts
- Metaverse(AR/VR)10 Posts
- Patent Drafting & Illustrations73 Posts
- Patent Monitoring33 Posts
- Patent Portfolio Commercialization32 Posts
- Patent Portfolio Management71 Posts
- Patent Prosecution79 Posts
- Patentability Search63 Posts
- Pharmaceuticals6 Posts
- Press Release20 Posts
- Semiconductor and Electronics5 Posts
- Smartphone Technology3 Posts
- Standard Essential Patents (SEP)11 Posts
- State of the Art15 Posts
- Tech Scaper1 Posts
- Technology125 Posts
- Technology Scouting21 Posts
- Telecummunication6 Posts
- USA4 Posts
- Whitespace Analysis15 Posts